Integrated Anaerobic-Aerobic Biodegradation of Multiple Contaminants Including Chlorinated Ethylenes, Benzene, Toluene, and Dichloromethane
نویسندگان
چکیده
Complete bioremediation of soils containing multiple volatile organic compounds (VOCs) remains a challenge. To explore the possibility of complete bioremediation through integrated anaerobic-aerobic biodegradation, laboratory feasibility tests followed by alternate anaerobic-aerobic and aerobic-anaerobic biodegradation tests were performed. Chlorinated ethylenes, including tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), and vinyl chloride (VC), and dichloromethane (DCM) were used for anaerobic biodegradation, whereas benzene, toluene, and DCM were used for aerobic biodegradation tests. Microbial communities involved in the biodegradation tests were analyzed to characterize the major bacteria that may contribute to biodegradation. The results demonstrated that integrated anaerobic-aerobic biodegradation was capable of completely degrading the seven VOCs with initial concentration of each VOC less than 30 mg/L. Benzene and toluene were degraded within 8 days, and DCM was degraded within 20 to 27 days under aerobic conditions when initial oxygen concentrations in the headspaces of test bottles were set to 5.3% and 21.0%. Dehalococcoides sp., generally considered sensitive to oxygen, survived aerobic conditions for 28 days and was activated during the subsequent anaerobic biodegradation. However, degradation of cis-DCE was suppressed after oxygen exposure for more than 201 days, suggesting the loss of viability of Dehalococcoides sp., as they are the only known anaerobic bacteria that can completely biodegrade chlorinated ethylenes to ethylene. Anaerobic degradation of DCM following previous aerobic degradation was complete, and yet-unknown microbes may be involved in the process. The findings may provide a scientific and practical basis for the complete bioremediation of multiple contaminants in situ and a subject for further exploration.
منابع مشابه
Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/Wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers.
The in situ degradation of chlorinated ethenes was assessed in an anaerobic aquifer using stable isotope fractionation approaches, microcosm studies and taxon specific detection of specific dehalogenating groups of bacteria. The aquifer in the Bitterfeld/Wolfen region in Germany contained all chlorinated ethenes, benzene and toluene as contaminants. The concentrations and isotope composition of...
متن کاملBiodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions
Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue...
متن کاملStable Carbon Isotope Fractionation in Chlorinated Ethene Degradation by Bacteria Expressing Three Toluene Oxygenases
One difficulty in using bioremediation at a contaminated site is demonstrating that biodegradation is actually occurring in situ. The stable isotope composition of contaminants may help with this, since they can serve as an indicator of biological activity. To use this approach it is necessary to establish how a particular biodegradation pathway affects the isotopic composition of a contaminant...
متن کاملThe impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane.
1,4-Dioxane (dioxane), a probable human carcinogen, is used as a solvent stabilizer for 1,1,1-trichloroethane (TCA) and other chlorinated solvents. Consequently, TCA and its abiotic breakdown product 1,1-dichloroethene (DCE) are common co-contaminants of dioxane in groundwater. The aerobic degradation of dioxane by microorganisms has been demonstrated in laboratory studies, but the potential ef...
متن کاملChlorinated Solvents: I. Model Framework
Complete mineralization of chlorinated solvents by microbial action has been demonstrated under aerobic as well as anaerobic conditions. In most of the cases, it is believed that the biodegradation is initiated by broad-specificity enzymes involved in metabolism of a primary substrate. Under aerobic conditions, some of the primary carbon and energy substrates are methane, propane, toluene, phen...
متن کامل